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Optimal Grouping, Spacing, Stratification and

Piecewise Constant Approximation

by

R. L. Eubank
Southern Methodist University

1. Introduction and Summary. It has been recognized for some

tim . that there is a structural similarity between certain problems

of optimal grouping, spacing, and stratification. See, for example,

Cox (1957),Kulldorff (1958a,b, 1961), Sirndal (1961, 1962), Ekman (1969),

Bofinger (1975), BUhler and Deutler (1975) and Adatia and Chan (1981).

In this paper the underlying relationship between these and other prob-

lems is established. Specifically, it is shown that all these problems,

when viewed in the quantile domain, become problems of optimal knot

(breakpoint) selection for piecewise constant L2 [0,1] approximation.

This fact allows us to develop a unified approach to all such problems

that includes i) conditions for existence and uniqueness of solutions

ii) a computational algorithm and iii) simple approximate solutions.

In addition, this approach provides insight into the geometry of and

connection between these problem areas. Questions pertaining to the

equivalence of certain problems, such as considered by Adatia and

Chan (1981), become questions regarding the equivalence of certain

j function approximation problems.i
In the next section we examine a canonical form for the problems

to be considered and establish our principal results concerning its

solution. In subsequent sections these results are applied to various

problems of optimal stratification and grouping, optimal spacing and

grouping and some bivariate stratification and grouping problems
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that have appeared in the literature.

2. An optimal grouping problem. Let X be a random variable

with strictly increasing distribution function (d.f.) F and associated

continuous probability density function (p.d.f.) f - F'. Define the

quantile function (q.f.) for F as Q(u) - F- (u), 0 < u < 1, and

density-guantile function by fQ(u) - f(Q(u)), 0 < u < I. Also let

a = x0 < x1 < ... < xk+1 - b (where we allow for either or both of

a - --, b = -) represent a partition of the range of X and note that

the set of percentile points associated with the x i's, U - {uo,.. .,Uk+l

is uniquely defined by

u0 = 0

Q(u i)  =xi, i = 1,...,k, (2.1)

Uk+l 1 .

The probability mass corresponding to the ith interval can then be

written as

F(xi) - F(xi_1 ) M i - ui 1 . (2.2)

Suppose that instead of X the object of interest is a monotone

increasing transformation T(X) which, for convenience of presentation,

is discretized to obtain a new variable

Tu(X) mi , x < x i  (2.3)

where mi is the conditional mean of T(X) on the ith interval, i.e.,

mi - (uiui)Jf T(x)f(x)dx = (uCu ii) J TQ(u)du, (2.4)
xi u

ii-l

and TQ(u) - T(Q(u)). The characteristics of T(X) are then summarized

by (x1,mi), i 1,...,k+l. Observing that T(X) and T uX) will have



identical expectations, whose common value may be taken without loss

of generality as zero, the "within group variance" of this summariza-

tion scheme can be written as

V(T(X) - Tu(X)) - f 1TQ(u)2du - Z Ckl(u _l)M . (2.5)
o

Since this variance is a function of the partition or grouping,

the xi's,or equivalently U,should be chosen to minimize (2.5).

Therefore, let us define the set of all "k-point spacings" by

Dk u (Uo, Ul,...,uk+l): 0 = u0 < U < ... < uk 1i=} (2.6)

and consider the problem of selecting a U*cDk that satisfies

V(T(X) - Tu*(X)) = infu D V(T(X)-T uX)). (2.7)

A spacing U* satisfying (2.7) will be termed an optimal spacing.

It should be emphasized that choosing an optimal spacing is equivalent

to choosing an optimal partition. In subsequent work we will, there-

fore, often indicate only how to obtain an optimal U with the use of

(2.1) to obtain the corresponding grouping an implied next step.

Let <-,.> and 11'11 denote the usual L2 [0,1] inner product and

2 .2
norm and note that (uiCui 1l)mi <TQ,BI > where Bi is the ith normalized

B-spline for the knot sequence ui, i = l,...,k+l, with

-1/2-
BU Cu) i_ iJ..<L <u

B 0 otherwise.

Then, as <Bi,Bj> -6iJ we have

V(T(X) - Tu(X)) _ fl TQ(u)2 du _k+ 2(<TQ2B.>
0 (2.8)

W UpTQ o Pe(TQ)t 12

(Bi: i - 1,...,k+l}. Thus minimizing (2.5) with respect to U is
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equivalent to finding the best set of knots (breakpoints) for the

approximation of TQ by splines of order one (piecewise constants).

Regarding this latter problem several results can be deduced from

the approximation theory literature that, for the problem at hand,

may be stated as follows.

Proposition (Barrar and Loeb (1970)). If TQ is square integrable

(i.e. TCX) has finite variance) and is not piecewise constant for any

k there exists at least one optimal UeD and, hence, at least one
k

optimal partition for T UX).

Theorem 1 (Chow (1982)) If TQC I0,11]L 2 [0,1] with (TQ)' > 0
on [O,1] a necessary condition for U to minimize V(T(X) - T UX))

is that

Si(U) - 2TQ(ui) m i - m i+ 1 " 0, i= 1,...,k (2.9)

If, in addition, log(TQ)* is concave on (0,1) the solution to (2.9)

is unique and, hence, the optimal spacings for problem (2.7) are

unique for each po;itive integer k.

Equations (2.9) provide a method for computing optimal spacing

candidates since, under the stated necessary conditions, one may use

Newton's method to search for zeros of the mapping S(U) (SI(U),...,Sk(U)).

This is particularly simple, in this case, since the Jacobian matrix is

tridiagonal with nonzero elements

asi -_
u - (ui - ui_) TQ(u mi] , 2 < i _< k , (2.10)

-u - 2(TQ)'Cui) - TQ(u Mu -u )-l- Ui,- i  (2.11)
auii i i i1 i11(.1

ui ) -l mi + 1
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and as i _U~_i J-- [-u -u ) TQ(u ) - m i+l1, 1 < i < k - 1. (2.12)

iu i+1  -l1 - _

When log (TQ)' is concave, it follows from the proof of Theorem 1

that the Jacobian is diagonally dominant and positive definite at the

optimal spacing so that, with a good initial guess, Newton's method

will find the optimal solution. A discussion of uniqueness conditions

such as those in Theorem l,as well as the algorithm implied by (2.9)-

(2.12) that is phrased in a regression design setting can be found in

Eubank, Smith, and Smith (1981, 1982). See also Barrow, et al (1978)

for related work.

Frequently for complicated TQ functions it will be convenient

to use the approximate (asymptotic) solution provided by the next

theorem whose proof is an application of Theorem 1.1 of Burchard

and Hale (1975) and Theorem 4.4 of Pence and Smith (1982).

Theorem 2. Assume that TQEL 2[o,I]inCo,1) and that either

i) (TQ)'EC[0,1] or ii) I(TQ)'I is integrable over [a, ] for any

0 < a < B < 1 and monotone almost everywhere with I(TO)(u) 
213

integrable. Define the density

h(u) - I(TQ)'(u)j213/fl(TQ)'(s)12/3ds (2.13)

-1 0 1with corresponding q.f., H , assumed to be in C [0,1] and let {Uk I

denote the spacing sequence whose kth element is Uk-fO,H
1 ( 1 ),...,H 1 ( ),i}.

Under these assumption

lim k2V(T(X) - T x)) - lim k2 infU D V(T(X) - Tx))

1  2/3 3X I fI(TQ)'(u)2 du] /12. (2.14)

0

Theorem 2 has the interpretation that the within group variances

corresponding to optimal spacings and spacings chosen as the (k+l)-
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tiles of h have identical asymptotic (as k- ) behaviour which

suggests that a computationally expedient solution may be obtained

by using the partition xi 0 Q(H- (i/k+l)) for k sufficiently large.

Alternative conditions on h (rather than H- ) that, under assumption

i),also imply Theorem 2 are given in Theorem 3.1 of Sacks and

Ylvisaker (1968).

In the remainder of this paper it will be seen that a variety

of statistical problems can be formulated as in this section and, hence

are all variable knot piecewise constant approximation problems. Con-

sequently, Theorems 1 and 2 furnish a unified approach that, in many

cases, provides new results for the problem areas we consider. Connec-

tions with the work of others will be discussed in the appropriate

sections. However, we note at the outset that the conditions imposed

here appear to be weaker than those employed by others to obtain

comparable results. In addition, the uniqueness conditions in Theorem

1 are essentially the first of their kind for most of the problems we

examine. This is of particular importance in view of their implications

for the computational algorithm that follows from equations (2.9)-(2.12).

To conclude this section it should be noted that in some cases,

which arise subsequently, T(X) will involve unknown parameters. In

such instances values that may be used for these parameters may be

available from previous or pilot studies, prior knowledge or, perhaps,

from a null hypothesis that is to be tested. Of course if the para-

meters are of a "location-scale" variety, i.e., TQ(u)-c+dW(u) for

some known function W, an optimal value for U can still be determined

since IITQ-Pu(TQ)il - Idl I W-PuWI. Although the computation of

the xi's may still require knowledge of c and d,the optimal U's will



still be useful in analyzing the robustness of (2.5) to incorrect

guesses for the parameter values (c.f. Kulldorff (1961, Sections 2.7,

8.5 and 9.4)).

3. Optimal stratification and grouping. In this section

several problems of optimal stratification and grouping are consi-

dered that are related in the sense that all can be formulated as

piecewise constant approximation problems for the quantile function.

In each case the results of Section 2 provide techniques for both

exact and approximate solutions. We begin with an optimal strati-

fication problem.

For a random variable X with continuous p.d.f., f, Dalenius (1950)

considered the problem of dividing the range of X into strata, with

boundaries a - x0<...<xk+lfb, so as to minimize the variance of the

usual estimate of the mean from a stratified random sample of size N,
k+l

-EiM Fi )-F(Xil))Xi where Xi is the sample mean for the ith

stratum. Using the notation of Section 2 the mean and variance of

the ith stratum (xil ,xi ] can be written as

mi - (u i-uil)- f ui Q(u)du (3.1)

and i-l

a2 (u u )- I u i (Q(u)-m 2du. (3.2)
i-1 i-1

For proportional allocation, where the number of elements taken from

the ith stratum is N(ui-ui 1 ), it follows from Dalenius (1950) and

the previous section that the variance of X is

V(X) - N- 1 f(u)2du tk+l 2
E il Cu-ui )ai 0 i-l (u i-i

. N -l JQ - PuQ I12 (3.3)
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Thus, selecting strata to minimize V(X), under proportional allocation,

is equivalent to finding the best set of knots for L2(0,1] piecewise

constant approximation of the q.f. and we are now in a position to

apply results from Section 2. Consequently, for QECl[0,llL 2 [0,1]

with Q' > 0 on (0,1] optimal spacing candidates may be found as

solutions to

Si(U) -2Q(u i) - mi - mi+I - 0, i - 1,...,k, (3.4)

using (2.10) - (2.12), with TQ = Q, and Newton's method. Equations

(3.4) were first considered in the context of optimal stratification

by Daleniun (1950). An approximate solution to these equations is

provided by ui = H- (i/k+l), the (k+l)-tiles of the density

h(u) {Q (u)} 2/3/IfQ(s)} ds. (3.5)
0

Examples of this approximate solution are u, = i/k+l for the uniform
i 3

distribution (Q(u)-u), u-l-1l-k-) for the exponential distribution

(Q(u) - -log(l-u)) and ui (1/k+l) 3/2 for F(x) = x2 on [0,11 (Q(u)=ul/2).

Whereas all three distributions satisfy the hypotheses of Theorem 2

the latter two do not satisfy the continuity conditions on Q' imposed

by Theorem l,meaning we are not immediately justified in using (3.4)

to compute optimal strata for random variables with these distributions.

This problem will now be considered in more detail.

From Theorem 1, equations (3.4) will have a unique solution if

Q and Q' - l/fQ are continuous with 1/fQ>0 on [0,11 and -logfQ concave

on (0,1). The latter two conditions are usually satisfied. However,

for most laws fQ(0) - fQ(1) - 0 and Q is finite at 0 and I only for

laws having a finite range. As a result, Q and Q' frequently will

not satisfy the continuity conditions at 0 and 1. We now illustrate



9

how the approach of Section 2 can be modified to deal with such

difficulties for certain types of laws. The arguments follow those

by Barrow, et al (1978) and Chow (1982). The basic approach will

be indicated here with the interested reader referred to either of

these two papers for further details. Although the discussion which

follows will be phrased in terms of approximation of Q the results

will, of course, apply to TQ in general upon appropriate modifica-

tion.

Now assume that Q is not piecewise constant for any k and is

an element of C (o,l)nL 2[0,1]. It then follows from Chow (1982),

or may be verified directly, that

1
Q(ui) - (PuQ)(ui-) = (ui-uil)fsQ'(s(ui-ui1 l)+i-l)ds, i=2,...,k (3.6)

0
and

Q(u)-(PQ)(u+) = -(uj !l-u )f (l-s)Q'(s(ui+l-u i)+u )ds,i=l,...,k-i, (3.7)Qi-(u)i )  i 0Uiil-Ui)

It is now assumed that (3.6) and (3.7) are well defined at i = 1 and k

respectively. Note that this allows for cases such as Q(u) = u I/2

and -log(l-u). Using the local nature of piecewise constant approxi-

mation, it is easily shown by differentiating the error functional on

the subintervals (u iu i+l) , that for optimal U

IQ(ui) - (PuQ)(ui-)I = IQ(ui) - (PuQ)(ui+) I , i = l,...k. (3.8)

If Q' > 0 on (0,1) we may use (3.6) and (3.7) to rewrite (3.8) as

Cu) Cui-ui 1 )f'sQ'(s(ui-ui-) + ui-1 )ds (3.9)
0

1
-(Ui+l-U) f (I-s)Q'(s(ui+l-ui)+ui)ds = 0,i=l,...,k,

0

which is precisely (3.4). Consequently, the necessary conditions (3.4)

still hold under these weaker assumptions. If, in addition, the Jacobian
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matrix of s(u) - (SI(U),.. .,sk(U)) is positive definite then argu-

ments in Section 4 of Barrow, et al (1978) may be used to show that

(3.9) has a unique solution. In particular, it follows from results

in Section 3 of Barrow, et al (1978) that if logQ' is concave the

solution to (3.9) is unique provided k aSl/au and Zk aSk/auJu 1 j- Jul k j

are positive. To illustrate the use of this result let Q(u) - u1/2

or logu and observe that we need only show k-1 as 1u 0 as both

functions are continuously differentiable at 1. From (3.9) we have

k 1 1 2E~k~ asl/auJ = f  s 1S)dS + Ulof s Q"(SUl)dS

1
- (u2 -u1)f(l-s)Q"(s(u2-uI ) + u1 )ds

0

which is found to be positive for both u1/2 and logu. Thus, there

exists unique optimal strata boundaries for the distribution F(x)=x
2

and,from symmetry considerations, for the exponential distribution

as well.

The approximate solutions obtained from h in (3.5) (and others

that are asymptotically equivalent) have also been studied by Ekman

(1960, 1963, 1969) and Sirndal (1961, 1962). Ekman (1963, pg. 78)

imposes the conditions that f' and f" exist and are continuous over

any finite interval and that f (z) = z kf(z - I) exists for some k>3 for

which f' and f" also exist and are finite for some z in a neighborhood
1 1

of 0 and 0 < f < . Although comparison is somewhat difficult theseI1

conditions seem more restrictive and more difficult to check, for

-* most laws, than the conditions on Q required in Theorem 2. More

immediate comparisons can be made with Slrndal (1961) who requires

Q to have four bounded continuous derivatives. It is also of interest

to note that Ekman (1963) shows that, for optimal strata boundaries,

2 1 2/3 3
limk infNV(X) - [fQ'(u) du] /12, provided f is ccntinuous and Q
k- UEDk 0<Ak



11

is square integrable. Quantile based conditions for this result to

hold, such as QeL 2(0,1] with Q' integrable, can be obtained from

Theorem 1.1 of Burchard and Hale (1975).

Under optimal (or Neyman) allocation the variance of X is

k+lnot (3.3) but rather E i-l (u iuil)oi. Approximate solutions to

the optimal stratification problem in this case, similar to those

discussed previously, have been studied by Dalenius and Hodges (1957,

1959), Ekman (1959a, b, c, 1960, 1963), Sethi (1963) and others.

They use stratification points that are selected (or are asymptotically

1/2
equivalent to those selected) from the density proportional to f(x)

Making the change of variable X=Q(u), this is recognized as equivalent

to selecting spacings according to h(u) = Q'(u)l/ 2/flQ'(s)l/2ds which
0

is the same density one would use in knot selection for piecewise

constant L1f0,1] approximation of Q (c.f. Pence and Smith (1982)).

This has the interesting consequence of establishing an asymptotic

equivalence between variable knot L1 [0,1] piecewise constant approxi-

mation of Q and optimal strata selection under Neyman allocation.

Several other authors have considered problems that are formally

equivalent to the problem of optimal stratification with proportional

allocation. A problem of grouping to "minimize loss of information"

considered by Cox (1957) utilizes a loss function whose expectation

is proportional to (3.3) and a "mixing problem" considered by

Ekman (1969) can also be formulated as minimization of IIQpu 
2

in a particular instance. Under certain restrictions (see Chan and

Adatia (1981)) a three group regression problem discussed by Gibson

and Jowett (1975) provides an estimate of a regression coefficient

3 2 -1 [2_ 121-1whose variance iS proportional to [til(Ui-Ui1l)mi] [IjQj 12-fQ-PQI 2 -
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Consequently, the results presented in this section are directly

applicable to all these problems.

A grouping and combining problem posed by Rade (1963) can also

be formulated as piecewise constant approximation of Q. Given an

additive quality variable X with zero mean and symmetric density f,

and a grouping - - X_(k+l) < ... < x 1 < x0 < x1 < ... < Xk+1

where x0 = 0 and x - x an observation on X that falls between

and x(11l) is paired with one from the interval (xi-1 , xi).

The objective is to choose a grouping that maximizes the proportional

increase in variability from pairing values at random over that for

the grouped pairing scheme. This proportional increase in variability
(k+l(-u _l)m from which we see that the problem

is shown to be i=~~-

is equivalent to optimal knot selection for piecewise constant L2t.5,1]

approximation of Q. The results of this section are now applicable

after the obvious modifications..

4. Optimal grouping and spacing. The problems considered in

this section can all be formulated as piecewise constant approxima-

tion of fQ or the product of fQ and Q, fQ.Q. We begin by considering

a problem of optimal quantile selection for location or scale para-

meter estimation.

Let XI,...,2 denote a random sample from a distribution of the

form F( X-) where P and a are respectively location and scale para-
a

meters and F is a known distributional form with associated p.d.f.

f and q.f. Q. Define the sample quantile function by

Q(u) - )' < u , -j (4.1)

where X(j) is the jth sample order statistic. It is frequently

convenient to estimate u or a by linear functions of k < N sample
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quantiles. For a given UeDk such estimators have the form

b + Z k b Q(u where explicit formulae for asymptotically (as

N -ac) optimal weights have been given by Ogawa (1951). The esti-

mators of 4 and a that result from Ogawa's weights are called the

asymptotically best linear unbiased estimators (ABLUE's) and will

be denoted here by U(U) and a(U). When a is known, p(U) has

asymptotic relative Fisher efficiency (ARE)

RE0(u)) - 1(0i) - l k + l.l [fQ(u )-fQ(u-) 2 /(u (4.2)
1

where I() = f[(fQ)' (u) 2du and we assume that fQ(O)-fQ(l) 0.
0

Similarly, when u is known and fQ(0)Q(O) - fQ(1)Q(l) - 0,
ARE(a(U)) =I(a)-i (Uil)QAui I )  (ui-u (4.3)

i-l ± ± u 1 Qu 1 ]/(±u 1  43

where I(a) = f[(fQ'Q)'(u)]2du. The ARE's of both estimators are
0

functions of U and, consequently, U should be chosen to maximize one

of (4.2) or (4.3) thereby obtaining a best k-quantile subset for

estimating the parameter of interest. This problem of optimal

spacing selection has received considerable attention in the

literature (see Cheng (1975) and Eubank (1981) for references).

Maximizing (4.2) (or, equivalently, minimizing l-ARE(v(U)))

is seen to follow the pattern in Section 2 by taking

mi = (ui-u 1 il)-1fui (fQ)' (u)du
ui- 1

so that TQ - (fQ)'. For scale parameter estimation the analogous

result follows with TQ - (fQ*Q)'. Therefore, the problem of optimal

spacing selection for u(U) and a(U) is equivalent to optimal knot

selection for piecewise constant L2 [0,1] approximation of (fQ)' and

(fQ'Q)' respectively.

Equations (2.9), in this setting, have been utilized to compute
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optimal spacings for a variety of distributions (c.f. Chan and

Kabir (1969) and Cheng (1975)). A general approach to this

problem, including a computational algorithm using (2.9)-(2.12),

is discussed in Eubank, Smith and Smith (1982). The conditions

for uniqueness of optimal spacings provided by Theorem 1 were

given previously in Eubank (1981) and, for v(U), require that

(fQ)' and (fQ)" be continuous with (fQ)" of one sign on [0,1)

and log(fQ)" (or log-(fQ)" as appropriate) concave on (0,1).

Results for a(U) follow similarly. We note that these restric-

tions can be weakened, as in Section 3, to deal with distributions

such as the Weibull, F(x) - 1 - exp{-xV1, x, v > 0, for which

(fQ-Q)"(u)-V(l-u)-I and, hence, does not satisfy the stated

continuity conditions. These uniqueness conditions are to be

compared with those imposed by Rhodin (1976) who requires that

fQ and fQ-Q have three continuous derivatives and also satisfy a

concavity condition. As an approximate solution one may use

spacings selected according to the densities

I f(fQ)"(u)j 2 13 /f l(fQ)"(s)12/3ds , a known,

h(u) - 0 (4.4)

i(fQQ)"(u)121/3/f'I(fQ.Q)"(s)12/3ds, i known,
0

examples of which can be found in Eubank (1981). These densities

were also proposed by Sirndal (1961, 1962) under the condition

that fQ and fQ-Q have four continuous derivatives.

Now suppose that one has two random samples Z1, ... ,Zn and

Y ,...,Y m, with d.f.'s F and G respectively, and wishes to test

the hypothesis G(x) - F(x) against the alternative G(x) F(x-u).

- .. . . .. . . .. . . ! ,,I. ". . " .. ... " '-pt ... ..
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If X(1),...,X(N) (N - n+m) denotes the combined ordered sample and

Q is defined as in (4.1), this hypothesis may be tested using a rank

test based on a statistic of the form

1
RN f J(u)6(Q(u))du

0

where J(u) - c < u < N- and 6 (Q(u)) -1, if Q(u) is a Z

observation and is zero otherwise. Gastwirth (1966) shows how J

may be chosen to obtain the asymptotically most powerful rank test

(a.m.p.r.t.) and, given a spacing UEDk, also considers group rank

tests based on statistics of the form
ujNOu) - Zl.1 cf (Q(u))du.

-u _

It is then shown that, for optimal ci, the ARE of the resulting

asymptotically most powerful group rank test (a.m.p.g.r.t.) to the

a.m.p.r.t. is precisely (4.2), For testing G(x) = F(x) against

the alternative G(x) - F(x/o) the analogous result is that the

asymptotic efficiency of the a.m.p.g.r.t. relative to the a.m.p.r.t.

is (4.3). Thus previous comments on optimal spacing selection for

ij(U) and a(U) including conditions for uniqueness, the computational

algorithm in Eubank, Smith and Smith (1982) and the densities (4.4)

apply to the problem of optimal group selection for the a.m.p.g.r.t.

as well.

Given a grouping a - x0 < x1 < ... < Xk+l ' b, Kulldorff (1958a,

b, 1961) considered the problem of maximum likelihood estimation of

a parameter, e, when the available information from a random sample

of size N consists only of the number of values falling in each

interval (xilXi ], i - l,...,k+l. Let F(x;e), denote the common
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d.f. for the sample elements with associated p.d.f., q.f. and

density-quantile function f(x;B), Q(u;e) and fQ(u;e) - f(Q(u;e);e).

Then, under regularity conditions, it is shown that the asymptotic (as N-)

variance of the maximum likelihood estimator (MLE) is

V(^) _-l _k+l (u a 2}-le N {im1  i uii)(T- log(u-uilz)) (4.5)

where u, M F(x ;0). Now

- a(ui ui)- [fQ (ui;) 8)
relog(u i-u i_ )  -( = il-lf~ 6-a

- fQ(ui ;e ) 8

DF(x; _) =-_;_e_
which follows from the identity ae- -fQ(u;e) aQeu;

so Theorems 1 and 2 are applicable with TQ(u) - Q[fQ(u;8) aQ(u;6) ]

When 8 is a location or scale parameter (4.5) is, apart from constant

multiples, identical to (4.2) and (4.3) respectively so that selecting

optimal spacings for the ABLUE's and MLE's of u and a are equivalent

problems. However, in the latter case the xi's must also be determined,

which requires knowledge of 6. Kulldorff (1958a, b, 1961) has investi-

gated the solutions to equations (2.9) for the normal and exponential

distributions and found that, in these cases, V(6) behaves somewhat

robustly with respect to incorrect guesses for 6.

An insightful paper by Adatia and Chan (1981) investigates the

question of when the problems of optimal quantile selection for

the ABLUE, optimal stratification with proportional allocation and

optimal grouping for the MLE's of u and a are equivalent. It now

follows from the work in Section 2 that these problems are equivalent

if we are approximating, in each case, linear combinations of



17

the same function. For instance, for location parameter estimation

these three problems are equivalent if

(fQ)'(u) - c + dQ(u). (4.6)

For scale parameter estimation the analogous condition is

(fQ*Q)'(u) - c + dQ(u). (4.7)

Conditions (4.6) and (4.7) are the quantile domain version of the

principal condition in Theorem 5 of Adatia and Chan (1981) (they

also provide conditions under which (4.6) and (4.7) are both necessary

and sufficient). If one considers location parameter estimation for

distributions having support on the entire real line (4.6) gives a

differential equation in f (namely f' - (c + dx) f - 0) for which

the normal distribution is the only solution. Similarly, for scale

parameter estimation and distributions having support on (0,-) the

only solution to (4.7) is the gamma family of distributions. In

particular, it follows from this that all the problems considered, up

to this point, are equivalent in the special case of a normal or gamma

distribution. This result will also be found to hold in the remaining

section.

Other problems, related to those in this section, have been

considered by Ogawa (1952), McClure (1980a,b), Koutrouvellis (1981)

and Saleh (1981). There is also a relationship between the problem

of optimal quantile selection for the ABLUE's and regression design

for time series with Brownian motion or Brownian bridge errors that

is explored in Eubank (1981) and Eubank, Smith and Smith (1982).

5. Other applications. In this final section several other

problems are considered some of which have a bivariate nature. We

begin with another stratification problem.
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5.1 Optimal stratification. In sampling, the variable that is

used for the purpose of stratification usually differs from the response

variable. Let X denote the variable, having p.d.f. and q.f. denoted

f and Q, upon which we intend to stratify. Assuming that X is related

to the response variable Y by

Y - (X) + e , (5.1)

where e is a zero mean random variable that is independent of X,

the problem we now consider is how to select strata boundaries,

a = x0 < x1 < ... < Xk+1 
= b, which minimize the variance of Y,

the mean response from a sample of size N selected with proportional allocation.

Let u.Q(u) = 4y(Q(u)) and define

mi = (ui-u il)-lf u i UyQ(u)du (5.2)
ui_1

where ui is given by (2.1). The variance of Y is then readily

verified to be 12
v(Y)- N-1 (a2 + f 1Q(u>2du - Ekl u-_k+l"  , 2

(5.3)

M N- [o + I IYQ - Pu( lyQ) I 2 1

02

where a is the variance of E. Consequently, the problem of optimal

strata selection under model (5.1) is equivalent to free knot piece-

wise constant approximation of TQ - 4yQ. Under the conditions of

Theorem 1 a U satisfying a necessary condition for optimality can be

obtained as a solution to the equations

2,lyQ(ui) - mi 0mi+I  O , i -l,...,k, (5.4)

which have also been considered by Dalenius and Gurney (1951)

and Herlekar (1967). We now observe that their solution is unique

if log(yQy)' is concave. An approximate solution is provided by the
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density proportional to (PYQ), (u) 12/3

In the event that UyQ(u) - c + dQ(u), i.e., Y has a linear

regression on X, it follows immediately from comments in Section 2

that the problem of strata selection reduces to the problem of

approximating Q treated in Section 3.

A similar problem that concerns optimal grouping and combining

has been considered by Rade (1963). The problem is essentially the

same as the one discussed in Section 3 except that now the grouping

is to be performed on an auxiliary variable X which is correlated with

the quality variable Y. The selection of optimal groupings, in this

case, is found to be a best L2 [.5, 1] approximation problem for the

"conditional mean", uyQ,which parallels the result obtained in Section

3 for the one variable case. We note in passing that the grouping

problem of Cox (1957) and the "mixing problem" considered by Ekman (1969)

have bivariate extensions that can also be analyzed using the techniques

presented here.

5.2 Optimal chi-squared test for homogeneity. Let X be a random

variable having p.d.f. f and q.f. Q. For a continuous density, g,

Pearson's i2 is defined by

1 + 2 f((x))2f(x)dx - f (Q(u) du (5.5)
0 fQ(u)

where integration is over the range of X and gQ(u) - g(Q(u)). We

.1 2
assume that (5.5) is finite and note that 2 provides a measure of the

distance between f and g. If the range of X is now partitioned into

contiguous subintervals having boundaries a - x0 < xI < ... < xk+l- b

it then follows from Lancaster (1969, pg. 86) or Bofinger (1975) that

2
the resulting grouped * can be written as
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2 Z k+l (u2_ui)m2 (5.6)

where the u are defined by (2.1) and

m -(u -u Y f P U du. (5.7)
fQ(u)

To obtain an optimal grouped distance measure the spacing, U, should

be chosen to minimize

2 2 f1 gQ(u)2 d k+l 2- du -E (uu) du -)mi~
U 0 fQ(U 2  u i- i~im

(5.8)

_ I I g p (_C)12
'fQ U fQ

Bofinger (1975) also notes that a spacing selected to minimize (5.8)

will, under certain conditions, maximize the non-centrality parameter

of a chi-squared test for the equality of the distributions corresponding

to f and g, thereby providing a best chi-squared homogeneity test. By

taking TQ - gQ/fQ, optimal and asymptotically (as k-O-) optimal groupings

for 2 can now be obtained using the results in Section 2.

If g(x) - f(x;e) and f(x) - f(x;e 0) for e close to e then, with

notation as in Section 4, we may use the approximation (see Lancaster (1969,

pg. 89) or Bofinger (1975))

gQ(u;e)/fQ(u;8 O) 1 - (6-6o)-Iu[fQ(u;eo) aq(u;e) 8  ] (5.9)

Themiimiaton f 2 2
The minimization of then reverts to the problem of approximating

aaQ~ u; te
[fq(u;e) 'aQe)] for 8-8 that was previously considered in Section 4.

In the case of 8 a location or scale parameter and f a normal or gamma

density, previous comments regarding problem equivalences now also extend,

approximately, to this setting.

5.3 Optimal grouping for bivariate distributions. Let (x,Y)

denote a continuous bivariate random variable with joint p.d.f. Z(xy)
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and marginal densities f and g, for X and Y respectively, that are assumed

to satisfy ff[X(x,y)3f(x)g(y)1 dxdy < -. Also, let x) and n(Y) denote

the first canonical variables of the X and Y space (c.f. Lancaster (1969,

Chap. VI)) that correspond to the first (i.e., largest) canonical corre-

lation,p. If X is grouped as in previous sections, the resulting first

canonical variable for the new grouped X space was shown by Bofinger (1970)

to be

we Wu/[Zk+l (uj uj_)m ] (5.10)

where

M, = (u i-u i-l)-i fu  (CQ)(u)du (5.11)
K ui_1

and Q is the q.f. for X. The correlation between Mu(X) and n(Y) was
U

then shown to be

,k+l, 2 21/2
PU = P(ti(u -Ui-u1 )m J  

. (5.12)

One method of optimally grouping one of the variables in a bivariate

distribution, considered by Bofinger (1970), is to choose a spacing that

maximizes pU" In view of (5.12), this problem is now recognized as

equivalent to optimal knot selection for piecewise constant approxi-

mation of TQ = &Q. Consequently, for Q and (Q)' continuous with (&Q)'>O

on [0,1] a UeDk satisfying a necessary condition for optimality can be

computed by solving the system of equations

2&Q(ui) - mi - mi 1  0, i - 1,...,k,

that was also derived by Bofinger (1970). As an approximate solution

one may instead use spacings selected according to

h(u) - I(&Q)'(u) 121 /flj(Q)'(s)12/3ds. (5.13)
0

For a standardized bivariate distribution the canonical variables

are Hermite-Chebycheff polynomials (Eagleson (1964)) with (X) = X
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so that FQ-Q. Consequently, for the normal distribution the problems

of optimal startification, optimal quantile selection (for P(U)), optimal

grouping for the MLE of P, optimal grouping for Put etc. are all equiva-

lent. As a result the optimal groupings and spacings for all these

problems can be found inKulldorff (1963) for k - 1(1)10. The

asymptotically optimal spacing given by (5.13) is found to be

ui = O(T D-(i/k+l)), where € is the standard normal d.f., with

corresponding grouping D-1 (i/k+l), both of which are easily computed

from tables of the standard normal. There are also bivariate gamma

distributions having polynomial canonical variables (Kibble (1941),

Eagleson (1964)) so that similar comments regarding the equivalence

of previous problems obtain for these laws. In this instance optimal

spacings have been computed by Rhodin (1975) for k = 1(1)10 and shape

parameter values v - 2(1)10. Asymptotically optimal spacings obtained

using (5.13) have been given by Sgrndal (1964) for k = 1(1)10 and

v = 2(1)5.

In the case when both margins (i.e. both X and Y) are grouped,

Bofinger (1970, 1975) proposed an approximate solution that, in our

formulation, is equivalent to finding best free knot approximants to

EQ and nQy separately where Q is the q.f. for Y. This problem is,

therefore, also amenable to analysis by the techniques presented in

this section.
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